Over years of space laser communication technology advances, satellite optical networks (SONs) have emerged as a pivotal component in 6 G networks. Satellite services are transmitted from the global view, undergoing transmission through SONs, and being downloaded to the targeted areas. However, the transmission capacity of satellites passing through the areas where users are concentrated may be insufficient to download services transmitted worldwide. This problem exists in various kinds of satellite networks and may cause a large amount of service congestion. In this paper, we propose a multi-downlink delivery routing selection (MDD-RS) strategy to study the total utilization of transmission capacity of SONs. We construct an integer linear programming (ILP) model to establish an optimal case study for minimal network capacity occupation. Also, we design an online option, MDD-RS heuristic algorithm, dynamically calculating path routes, considering bandwidth allocation and resource constraints. A comparative analysis against the conventional single-downlink scheme reveals superior performance of the MDD-RS heuristic algorithm, with a reduction in blocking probability of 0.129 and an improvement in bandwidth utilization of 0.032.