Small amounts (less than 30 ppm) of polymer dissolved in solution may significantly reduce the work required to pump fluids through a pipe at a given rate. In other words, the drag of the solution along the pipe walls is reduced. Drag reduction by polymers has been well characterized, however the molecular origin of the phenomena is not fully understood. Polymers that exhibit drag reduction characteristics typically have high molecular weight, have predominantly linear, flexible chains, and have an expanded molecular configuration in solution.Work in this laboratory has focused on the drag reduction behavior of poly(acrylic acid), PAA, in recent years. This polymer is one of the most shear stable water-soluble polymers and due to the ionic groups in the polymer chain its conformation in solution changes with pH and ionic strength. In a recent work, PAA solutions of 18 ppm, pH=8.1, showed an initial drag reduction of over thirty-five percent in rotating disc experiments. Over four minutes of shearing the drag reduction decreased to ten percent. This was surprising because of the known shear stability of PAA. When the sheared solution was left undisturbed for two weeks, it did not recover its drag reduction performance. However, the addition of NaCl to the solution during the shearing immediately restored drag reduction to its initial level. It was hypothesized that the shear flow induced interchain association that was possibly stabilized by hydrogen bonding and that the addition of the NaCl caused dissociation and drag reduction recovery. In additional work, fluorescence probe studies showed that shear flow induced local chain rigidity in the originally flexible polymer chains. In this study, the drag reduction experiments were repeated and the configurations of the sheared and unsheared polymer chains were viewed using electron microscopy.
Read full abstract