The burning of low-quality fuels causes several problems in the operation of combustion equipment, which can negatively affect the equipment’s efficiency. The possibilities for the burning of pellets made from low-quality raw materials are limited mainly by the fusibility of the ash, which settles and melts on the surfaces of the burner, gradually causing it to clog. Smelted ash also causes a decrease in heat transfer efficiency, which negatively affects the overall efficiency of the heat source. A possible solution is provided by burners with a rotating combustion chamber, where the contact time of the molten ash with the walls of the burner is shortened, and thus there is no significant melting of the ash in the burner. This manuscript is dedicated to summarizing the current state of development of burners with a rotary chamber, presenting a novel design for such a burner, and providing an analysis of that design. To conclude, the results of experimental measurements on a classic burner and a burner with a rotary chamber are presented, including a comparison and evaluation mainly in terms of emissions. The novel-designed rotary burner achieved a higher heat output than the retort burner, but a similar thermal efficiency. The rotary burner produced 32.5% lower CO emissions, 12.5% higher NOx emissions, 23% lower OGC emissions, and 44.7% higher PM emissions in comparison with a retort burner under the same conditions. This novel rotary burner concept could, after optimization, be a suitable option for efficient combustion of alternative biofuels.
Read full abstract