The frequencies of marine heatwaves and thermal coral bleaching events (CBEs) over the Great Barrier Reef (GBR) continue to increase with five mass CBEs reported since 2016. While changes in the local meteorology, such as reduced wind speeds and decreased cloud cover, are known to heat the shallow reef waters, little consideration has been given to the overriding synoptic meteorology. The 2022 CBE, occurring under La Niña conditions, saw ocean temperatures at Davies Reef increase 1.9 ∘C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$^\\circ \\hbox {C}$$\\end{document} over 19-days and subsequently cool 2.1 ∘C\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$^\\circ \\hbox {C}$$\\end{document} back to seasonal norms over eight days. This event was found to be triggered by repeated Rossby wave breaking disrupting the local trade winds, thus inhibiting the latent heat flux. Latent heat fluxes, the primary driver of the event, tripled as the trade winds returned via rapid coastal ridging. These same synoptic features are concurrent with the historic Lismore flooding located hundreds of kilometres south of the GBR.
Read full abstract