In predictive microbiology, both primary and secondary models are widely used to estimate microbial growth, often applied through two-step or one-step modelling approaches. This study focused on developing a tool to predict the growth of Pseudomonas spp., a prominent bacterial genus in food spoilage, by applying machine learning regression models, including Support Vector Regression (SVR), Random Forest Regression (RFR) and Gaussian Process Regression (GPR). The key environmental factors—temperature, water activity, and pH—served as predictor variables to model the growth of Pseudomonas spp. in culture media. To assess model performance, these machine learning approaches were compared with traditional models, namely the Gompertz, Logistic, Baranyi, and Huang models, using statistical indicators such as the adjusted coefficient of determination (R2adj) and root mean square error (RMSE). Machine learning models provided superior accuracy over traditional approaches, with R2adj values from 0.834 to 0.959 and RMSE values between 0.005 and 0.010, showcasing their ability to handle complex growth patterns more effectively. GPR emerged as the most accurate model for both training and testing datasets. In external validation, additional statistical indices (bias factor, Bf: 0.998 to 1.047; accuracy factor, Af: 1.100 to 1.167) further supported GPR as a reliable alternative for microbial growth prediction. This machine learning-driven approach bypasses the need for the secondary modelling step required in traditional methods, highlighting its potential as a robust tool in predictive microbiology.
Read full abstract