Fusarium crown and root rot (FCRR) has emerged as a highly destructive soil-borne disease, posing a significant threat to the safe cultivation of tomatoes in recent years. The pathogen of tomato FCRR is Fusarium oxysporum f. sp. radicis-lycopersici (Forl). To explore potential phytotoxins from Forl, eight undescribed diterpenoids namely fusariumic acids A-H (1-8) were isolated. Their structures were elucidated by using spectroscopic data analyses, quantum chemical calculations, and X-ray crystallography. Fusariumic acids A (1) and C-H (3-8) were typical isocassadiene-type diterpenoids, while fusariumic acid B (2) contained a cage-like structure with an unusual 7,8-seco-isocassadiene skeleton. A biosynthetic pathway of 2 was proposed. Fusariumic acids A (1) and C-H (3-8) were further assessed for their phytotoxic effects on tomato seedlings at 200 μg/mL. Among them, fusariumic acid F (6) exhibited the strongest inhibition against the hypocotyl and root elongation of tomato seedlings, with inhibitory rates of 61.3 and 45.3%, respectively.