The influence of multiple factors often leads to the unexpected performances of the designed AIEgens. It is difficult to precisely conclude the influence of the substituted sites and role of isomers on the photophysical properties of the AIEgens which therefore brings uncertainty in the molecular design strategies. Isomer engineering of AIEgens is a less explored domain. There are only a few reports that substantiate the effects and positions of the substituents on the AIE properties. The present investigation explores two isomeric benzofuran-derived luminogens GBY-1 and GBY-4, both featuring a TPE moiety and showcasing AIE and AIEE properties respectively inherited from TPE. The isomeric effect resulting from TPE incorporation at different positions across benzofuran significantly influenced their photophysical properties, mechanofluorochromic properties, and AIE effect. Their distinctive luminogenic features were evident in mechanochromic property as well as in cancer cell imaging. GBY-1 was found to be uniformly dispersed in the cytoplasm, not co-localized with the nucleus, while GBY-4 accumulated near the cell membrane. Furthermore, post-functionalization of one of the luminogens, GBY-1, derived another AIEgen, GBY-5 with a dramatic improvement in the PLQE along with its ability to selectively sense Fe3+ in aqueous environments, within a detection limit of 0.00035 mM.
Read full abstract