We have shown in the other article of ours, published in the same issue as this one and entitled “Superconductivity in a Fermi liquid: The role of electron-phonon interaction,” that the quasiparticle interaction is just the particle interaction with an opposite sign. In other words, the interaction between two quasielectrons in k- or momentum-space is attractive while the interaction between two electrons in real space is repulsive. Since the quasiparticles are responsible for all properties of a Fermi liquid, then investigations of behaviors of quasipartilces will be sufficient for one to understand the relevant properties of the system consisting of those quasiparticles (particles), Moreover, as shown in our earlier work [1,2], pairing of two quasiparticles in a spin singlet state due to the Coulomb interaction is well-reasoned without needing any boson like retarded mediation between them, and a quartet structure among paired four quasiparticles will be further formed, leading to the doubly lower biding energy than that from a single Cooper’s pair. Under a certain condition a superconducting phase transition, corresponding to the resonance of a many-electron system with repulsion in the spin singlet state, may occur naturally. This showcases the physical picture of our earlier assertion [3] that superconductivity takes place naturally due to the Coulombic repulsive interaction.
Read full abstract