Osteoblast polarity, proliferation, differentiation, and migration are essential for maintaining normal bone structure and function. While the microtubule-associated protein Map1b has been extensively studied in nerve cells, its role in bone cells is less known. We investigated the functional significance of Map1b in mouse bone marrow stromal cells (ST2) and elucidated its relationship and influence on cytoskeletal polarity and Golgi organization. Our results suggest that Map1b, as a microtubule regulatory protein, can also regulate the expression of cyclin PCNA, p-H3(S10) and migration-related protein integrin β1, thereby affecting the proliferation and migration of osteoblasts. The downstream target gene Rgc32 was screened by RNA sequencing. Furthermore, Map1b, as a downstream mediator, regulates the Wnt5a signaling pathway. This study expands our understanding of the involvement of Map1b in bone biology and highlights its crucial role in governing osteoblast polarity, proliferation, and migration, thereby providing a basis for developing novel therapeutic strategies targeting Map1b in orthopedic medicine and promoting precision treatment modalities. Further investigations on the precise mechanisms underlying Map1b's influence on bone cell function and disease progression are needed.
Read full abstract