Folic acid and glycine are factors of great importance in early gestation. In sows, folic acid supplement can increase litter size through a decrease in embryonic mortality, while glycine, the most abundant amino acid in the sow oviduct, uterine, and allantoic fluids, is reported to act as an organic osmoregulator. In this study, we report the characterization of cytoplasmic serine hydroxymethyltransferase (cSHMT), T-protein, and vT-protein (variant T-protein) mRNA expression levels in endometrial and embryonic tissues in gestating sows on Day 25 of gestation according to the breed, parity, and folic acid + glycine supplementation. Expression levels of cSHMT, T-protein, and vT-protein mRNA in endometrial and embryonic tissues were performed using semiquantitative reverse transcription-polymerase chain reaction. We also report, for the first time, an alternative splicing event in the porcine T-protein gene. Results showed that a T-protein splice variant, vT-protein, is present in all the tested sow populations. Further characterizations revealed that this T-protein splice variant contains a coding intron that can adopt a secondary structure. Results demonstrated that cSHMT mRNA expression levels were significantly higher in sows receiving the folic acid + glycine supplementation, independently of the breed or parity and in both endometrial and embryonic tissues. Upon receiving the same treatment, the vT-protein and T-protein mRNA expression levels were significantly reduced in the endometrial tissue of Yorkshire-Landrace sows only. These results indicate that modulation of specific gene expression levels in endometrial and embryonic tissues of sows in early gestation could be one of the mechanism involved with the role of folic acid on improving swine reproduction traits.