AbstractMuch of our knowledge of the North American lithosphere comes from imaging seismic velocities. Additional constraints on the subsurface can be gained by studying seismic attenuation, which has different sensitivity to physical properties. We produce a model of lateral variations in attenuation across the conterminous U.S. by analyzing data recorded by the EarthScope Transportable Array. We divide the study area into 12 overlapping tiles and differential attenuation is measured in each tile independently; and twice for four of the tiles. Measurements are combined into a smooth map using a set of linear inversions. Comparing results for adjacent tiles and for repeated tiles shows that the imaged features are robust. The final map shows generally higher attenuation west of the Rocky Mountain Front than east of it, with significant small length scale variations superimposed on that broad pattern. In general, there is a strong anticorrelation between differential attenuation and shear wave velocities at depths of 80–250 km. However, a given change in velocity may correspond to a large or small change in attenuation, depending on the area; suggesting that different physical mechanisms are operating. In the western and south‐central U.S., as well as the Appalachians, velocity variations are large compared to attenuation changes, while the opposite is true in the north‐central and southeastern U.S. Calculations with the Very Broadband Rheology calculator show that these results are consistent with the main source of heterogeneity being temperature and melt fraction in the former regions and grain size variability in the latter ones.
Read full abstract