Microwave fracturing has great potential in improving the efficiency of hard rock breaking. However, the pore evolution, which can be regarded as the damage accumulation and progressive failure of the rock subjected to microwave irradiation, remains unclear. In this study, nuclear magnetic resonance (NMR) is employed to investigate the pore evolution and fracture mechanism of the sandstone under different microwave power levels. The results show that the pore evolution of the specimens, including distribution of pore size, the weight in volume of various-sized pore, and porosity, exhibits different changing trends under various microwave power levels. The pore evolution of the specimens under microwave irradiation can be categorized into four phases: overall pore expansion, localized pore closure in the internal region, micro-cracks propagation induced by thermal stress, and macro-cracking (or melting). Moreover, pore evolution also plays a crucial role in the decomposition and evaporation of bound water, particularly when the specimens experience fractures triggered by thermal stress induced by the microwave treatment (TSIMT). The employing of NMR imaging (NMRI) description also provides an auxiliary and effective illustration on the pore evolution of the specimens under microwave irradiation. Finally, the mechanism of microwave-assisted rock breaking under different power levels is comprehensively discussed based on the NMR results from a microscopic perspective. It is anticipated that the findings of this study can provide valuable insights for enhancing the efficiency of microwave-assisted rock breaking.
Read full abstract