Dehydration priming (DP) induces stress memory which plays a positive role in plant adaptability, but it is not well understood how DP differentially regulates subsequent dehydration (cis priming) or salt (trans priming) tolerance at the post-translational level. Purpose of this study was to identify proteins, phosphorylation levels and sites, and relevant metabolic pathways for DP-induced dehydration or salt tolerance in Agrostis stolonifera. DP-induced differentially regulated proteins (DRPs) were mostly located in the cytoplasm, chloroplast, and cell membrane, and differentially regulated phosphoproteins (DRPPs) were mostly nuclear proteins and cytoplasmic proteins. DP regulated common phosphorylation sites ([SP] and [RxxS]) under dehydration and salt conditions and also individually affected 8 or 11 phosphorylation sites under dehydration or salt stress. DP-regulated DRPPs were mainly rich in glycolysis and glutathione metabolism pathways, RNA splicing, and dynamin family proteins under dehydration stress, whereas DP-regulated salt tolerance was mainly related to chlorophyll metabolism, photosynthesis, MAPK signaling cascade, and ABC transporter I family at the phosphorylation level. In addition, the DP also significantly up-regulated phosphorylation of histones (ATXR3 and SETD1A) in response to subsequent dehydration and salt stress as well as abundances of antioxidant enzymes, dynamin family protein, and KCS6 under dehydration stress or abundances of PETE, HMGA, XTH, and ABCI6 under salt stress, respectively. Transcriptomics analysis further indicated that DP-regulated dehydration or salt tolerance was also related to transcriptional regulation in the early stage. Current results provided better understanding of the role of stress memory in plant adaptability to repeated or crossed stress via post-translational modifications (PTMs). SignificanceRecurrent moderate drought may buffer drought legacies in many plant species. When plants were exposed to repeated drought stress, their adaptability to subsequent stress could be enhanced, which is known as “stress memory”. Dehydration priming has been found to be an important approach to induce stress memory. Current results provided better understanding of the role of stress memory in plant adaptability to repeated or crossed stress via post-translational modifications.