BackgroundPathological cardiac remodeling is a critical process leading to heart failure, characterized primarily by inflammation and apoptosis. Matairesinol (Mat), a key chemical component of Podocarpus macrophyllus resin, exhibits a wide range of pharmacological activities, including anti-hydatid, antioxidant, antitumor, and anti-inflammatory effects. PurposeThis study aims to investigate whether Matairesinol alleviate cardiac hypertrophy and remodeling caused by pressure overload and to elucidate its mechanism of action. MethodsAn in vitro pressure loading model was established using neonatal rat cardiomyocytes treated with angiotensin Ⅱ, while an in vivo model was created using C57 mice subjected to transverse aortic constriction (TAC). To activate the PI3K/Akt/FoxO1 pathway, Ys-49 was employed. Moreover, small interfering RNA (siRNA) and short hairpin RNA (shRNA) were utilized to silence Prdx1 expression both in vitro and in vivo. Various techniques, including echocardiography, wheat germ agglutinin (WGA) staining, HE staining, PSR staining, and Masson trichrome staining, were used to assess cardiac function, cardiomyocyte cross-sectional area, and fibrosis levels in rats. Apoptosis in myocardial tissue and in vitro was detected by TUNEL assay, while reactive oxygen species (ROS) content in tissues and cells was measured using DHE staining. Furthermore, the affinity of Prdx1 with Mat and PI3K was analyzed using computer-simulated molecular docking. Western blotting and RT-PCR were utilized to evaluate Prdx1 levels and proteins related to apoptosis and oxidative stress, as well as the mRNA levels of cardiac hypertrophy and fibrosis-related indicators. ResultsMat significantly alleviated cardiac hypertrophy and fibrosis induced by TAC, preserved cardiac function, and markedly reduced cardiomyocyte apoptosis and oxidative damage. In vitro, mat attenuated ang Ⅱ - induced hypertrophy of nrvms and activation of neonatal rat fibroblasts. Notably, activation of the PI3K/Akt/FoxO1 pathway and downregulation of Prdx1 expression were observed in TAC mice; however, these effects were reversed by Mat treatment. Furthermore, Prdx1 knockdown activated the PI3K/Akt/FoxO1 pathway, leading to exacerbation of the disease. Molecular docking indicated that Molecular docking indicated that Mat upregulated Prdx1 expression by binding to it, thereby inhibiting the PI3K/Akt/FoxO1 pathway and protecting the heart by restoring Prdx1 expression levels. ConclusionMatairesinol alleviates pressure overload-induced cardiac remodeling both in vivo and in vitro by upregulating Prdx1 expression and inhibiting the PI3K/Akt/FoxO1 pathway. This study highlights the therapeutic potential of Matairesinol in the treatment of cardiac hypertrophy and remodeling, providing a promising avenue for future research and clinical application.