Reduced muscle mass has been associated with the progression and prognosis of amyotrophic lateral sclerosis (ALS). However, it remains unclear whether decreased muscle mass is a risk factor for ALS or a consequence of motor neuron degeneration. Recently, serum creatinine-to-cystatin C ratio (CCR) have emerged as promising biomarkers for assessing muscle mass. We aimed to explore the association between CCR and the incidence of ALS using data from the UK Biobank. Between 2006 and 2010, 446,945 participants were included in the baseline. CCR was calculated as the ratio of serum creatinine to cystatin C. Cox regression models were used to analyze the relationship between CCR and ALS incidence. Furthermore, subgroup analyses were conducted to investigate potential covariates in these relationships. After adjusting for all covariates, the multivariate Cox regression analysis revealed a significant association between decreased CCR and an increased risk of ALS (hazard ratio (HR) = 0.990, 95% confidence interval (CI): 0.982-0.999, P = 0.026). Participants were stratified into groups based on CCR tertiles. Compared with participants in the highest tertiles of CCR, those in the lowest (HR = 1.388, 95% CI: 1.032-1.866, P = 0.030) and medium tertiles (HR = 1.348, 95% CI: 1.045-1.739, P = 0.021) had an increased risk of ALS incidence. Subgroup analysis showed that the relationship between CCR and ALS incidence was particularly significant among participants aged < 65years (CCR tertile 1: HR = 1.916, 95% CI: 1.366-2.688, P < 0.001; CCR tertile 2: HR = 1.699, 95% CI: 1.267-2.278, P < 0.001). The present results demonstrate that lower CCR is significantly associated with a higher risk of ALS.
Read full abstract