Tomato, a globally consumed vegetable, possesses vast genetic diversity, making it suitable for genetic manipulation using various genetic improvement techniques. Tomatoes are grown extensively for their market value and health benefits, primarily contributed by enhanced yield and nutritional value respectively, influenced by floral and fruit traits. Floral morphology is maintained by genes involved in meristem size control, regulation of inflorescence transition, and pollen development. SP (SELF-PRUNING) and SP5G (SELF-PRUNING 5G) determine growth habit and flowering time. RIN (RIPENING INHIBITOR) and PG (POLYGALACTURONASE) are responsible for the shelf life of fruits. In addition to this, nutrition-enriched tomatoes have been developed in recent times. In this review, we comprehensively discuss the major genes influencing floral morphology, flowering time, fruit size, fruit shape, shelf life, and nutritional value, ultimately resulting in enhanced yield. Additionally, we address the advances in CRISPR/Cas9 applied for the genetic improvement of tomatoes along with prospects of areas in which research development in terms of tomato genetic improvement has to be advanced.