Let GL2(R) be the general linear group of 2 × 2 invertible matrices in M2(R) over a commutative ring R with 1 and SL2(R) be the special linear group consisting of 2 × 2 matrices over R with determinant 1. In this paper we determine the homomorphisms from GL2 and SL2, as well as their projective groups, over Laurent polynomial rings to those groups over Gaussian domains, i.e. unique factorization domains (cf. Theorems 1, 2, 3 below). We also consider more generally the homomorphisms of non-projective groups over commutative rings containing a field which are generated by their units (cf. Theorems 4 and 5). So far the homomorphisms of two-dimensional linear groups over commutative rings have only been studied in some specific cases. Landin and Reiner[7] obtained the automorphisms of GL2(R), where R is a Euclidean domain generated by its units. When R is a type of generalized Euclidean domain with a degree function and with units of R and 0 forming a field, Cohn[3] described the automorphisms of GL2(R). Later, Cohn[4] applied his methods to the case of certain rings of quadratic integers. Dull[6] has considered the automorphisms of GL2(R) and SL2(R), along with their projective groups, provided that R is a GE-ring and 2 is a unit in R. McDonald [9] examined the automorphisms of GL2(R) when R has a large unit group. The most recent work of which we are aware is that of Li and Ren[8] where the automorphisms of E2(R) and GE2(R) were determined for any commutative ring R in which 2, 3 and 5 are units.
Read full abstract