BackgroundCervical cancer is one of the most common malignancies in women worldwide. As a RING type ubiquitin ligase, SIAH2 has been reported to promote the progression of a variety of tumors by interacting with and targeting multiple chaperones and substrates. The aim of this study was to further identify the role and the related molecular mechanisms involved of SIAH2 in cervical carcinogenesis. Methods and resultsCellular assays in vitro showed that knockdown of SIAH2 inhibited the proliferation, migration and invasion of human cervical cancer cells C33A and SiHa, induced apoptosis, and increased the sensitivity to cisplatin treatment. Knockdown of SIAH2 also inhibited the epithelial-mesenchymal transition and activation of the Akt/mTOR signaling pathway in cervical cancer cells, which were detected by Western blot. Mechanistically, SIAH2, as a ubiquitin ligase, induced the ubiquitination degradation of GSK3β degradation by using coIP. The results of complementation experiments further demonstrated that GSK3β overexpression rescued the increase of cell proliferation and invasion caused by SIAH2 overexpression. Specific expression of SIAH2 appeared in precancerous and cervical cancer tissues compared to inflammatory cervical lesions tissues using immunohistochemical staining. The more SIAH2 was expressed as the degree of cancer progressed. SIAH2 was significantly highly expressed in cervical cancer tissues (44/55, 80 %) compared with precancerous tissues (18/69, 26.1 %). Moreover, the expression level of SIAH2 in cervical cancer tissues was significantly correlated with the degree of cancer differentiation, and cervical cancer tissues with higher SIAH2 expression levels were less differentiated. ConclusionTargeting SIAH2 may be beneficial to the treatment of cervical cancer.
Read full abstract