In recent years, the synthesis of two-dimensional (2D) materials, particularly the crystalline and disordered phases of 2D transition metal chalcogenides (TMCs), has gained considerable attention due to their wider electronic band gaps. This distinctive feature is pivotal in shaping their potential applications in solar cells, sensors, field-effect transistors (FETs), and photocatalysis for water decomposition. In the present study, we report molecular dynamics simulation of 2d disordered configuration of ZnX and CdX (X: S, Se) compounds using the Stillinger–Weber potential. We have explored their structural features by calculating their radial distribution functions and ring statistics. These systems are thermodynamically stable. The disordered network with numerous voids in these compounds play a pivotal role in lowering their melting temperature compared to their 2D crystalline counterparts, which falls within the range of 600 K to 700 K. The phonon density of states for all these systems shows a higher number of lower frequency (acoustic) modes than optical modes, which is understandably due to the presence of open regions and 2-fold sites in such systems.