Escherichia coli O157:H7 is a foodborne pathogen that has been linked to global disease outbreaks. These diseases include hemorrhagic colitis and hemolytic uremic syndrome. It is vital to know the features that make this strain pathogenic to understand the development of disease outbreaks. In the current study, a comparative genomic analysis was carried out to determine the presence of structural and functional features of O157:H7 strains obtained from 115 National Center for Biotechnology Information database. These strains of interest were analysed in the following programs: BLAST Ring Image Generator, PlasmidFinder, ResFinder, VirulenceFinder, IslandViewer 4 and PHASTER. Five strains (ECP19–198, ECP19–798, F7508, F8952, H2495) demonstrated a great homology with Sakai because of a few regions missing. Five resistant genes were identified, however, Macrolide-associated resistance gene mdf(A) was commonly found in all genomes. Majority of the strains (97%) were positive for 15 of the virulent genes (espA, espB, espF, espJ, gad, chuA, eae, iss, nleA, nleB, nleC, ompT, tccP, terC and tir). The plasmid analysis demonstrated that the IncF group was the most prevalent in the strains analysed. The prophage and genomic island analysis showed a distribution of bacteriophages and genomic islands respectively. The results indicated that structural and functional features of the many O157:H7 strains differ and may be a result of obtaining mobile genetic elements via horizontal gene transfer. Understanding the evolution of O157:H7 strains pathogenicity in terms of their structural and functional features will enable the development of detection and control of transmission strategies.