Continuum joints use structural elastic deformations to enable joint motion, and their intrinsic compliance and inherent mechanical robustness are envisioned for applications in which the robot, the human, and the environment need to be safe during interaction. In particular, the intrinsic compliance makes continuum joints a competitor to soft articulated joints, which require additional integrated spring elements. For soft articulated joints incorporating rigid and soft parts, natural motions have been investigated in robotics research to exploit this energy-efficient motion property for cyclic motions, e.g., locomotion. To the best of the author’s knowledge, there is no robotic system to date that utilizes the natural motion of a continuum joint under periodic excitation. In this paper, the resonant behavior of a tendon-driven continuum joint under periodic excitation of the torsional axis is experimentally investigated in a functional sense. In the experiments, periodic inputs are introduced on the joint side of a tendon driven continuum joint with four tendons. By modulating the pretension of the tendons, both the resonant frequency and the gain can be shifted, from 3 to 4.3 Hz and 2.8 to 1.4, respectively, in the present experimental setup. An application would be the rotation of a humanoid torso, where gait frequencies are synchronized with the resonant frequency of the continuum joint.