BackgroundIn the late stage of spinal tuberculosis, the bony destruction and vertebral collapse often leads to significant kyphosis, presenting clinically as a painful gibbus deformity, with increased instability, vertebral body translations and increased risk of neurologic involvement. Spinal osteotomy is thought to be suitable for most patients with severe rigid kyphosis. The aim of this study was to evaluate the efficacy of transpedicular bi-vertebrae osteotomy technique in the patients with Pott’s kyphosis and other post-tubercular spinal deformity.MethodsBetween January 2012 and December 2015, 18 patients with post-tubercular spinal deformity underwent the transpedicular bi-vertebrae wedge osteotomy, with a minimum follow up of 27.0 months. Preoperative and postoperative kyphotic angle, sagittal plane parameters (TK for thoracic deformity, TLK for thoracolumbar and LL for lumbar deformity) and sagittal vertical axis (SVA) were measured. Oswestry Disability Index (ODI), Visual analog scale (VAS) and modified American Spinal Injury Association grading (ASIA) of preoperative and final follow-up were documented and compared. ResultsThe average operation time was 305 minutes (range, 200–430 minutes) with a mean intraoperative blood loss of 425 mL (range, 200-700 mL). The kyphotic angles decreased from 80.3° (range, 28.5°-130.8°) preoperatively to 26.1° (range, 7.0°-63.3°) at the final follow-up (P<0.01). The mean VAS score was reduced from preoperative 5.2(range, 2-9) to 0.9(range, 0-2, P<0.01) and the ODI improved from 55.3% (range, 46%-76%) to 6.3% (range, 2%-18%, P<0.01). At final follow-up, there was radiographic evidence of solid fusion at the osteotomy site and fixed segments in all patients. Neurological function improved from ASIA scale D to E in 7 patients, C to D in 3 patients.ConclusionsOur results suggest that transpedicular bi-vertebrae wedge osteotomy is a safe and effective treatment option for post-tubercular spinal deformity. This technique achieves satisfying correction and fusion rates with adequate decompression of neurological elements.
Read full abstract