The purpose of this paper is to study the fundamental solution of the time-space bi-fractional diffusion equation incorporating an additional kinetic source term in semi-infinite space. The equation is a generalization of the integer-order model ∂tρ(x,t)=∂x2ρ(x,t)-ρ(x,t)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${\\partial _{{t}} {\\rho (x,t)}} = {\\partial ^2_{{x}} {\\rho (x,t)}} - { \\rho (x,t)}$$\\end{document} (also known as the Debye–Falkenhagen equation) by replacing the first-order time derivative with the Caputo fractional derivative of order 0<α<1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$0<\\alpha < 1$$\\end{document}, and the second-order space derivative with the Riesz-Feller fractional derivative of order 0<β<2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$0< \\beta <2$$\\end{document}. Using the Laplace-Fourier transforms method, it is shown that the parametric solutions are expressed in terms of the Fox’s H-function that we evaluate for different values of α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha$$\\end{document} and β\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta$$\\end{document}.
Read full abstract