AbstractA consequence of the surgery theorem of Gromov and Lawson is that every closed, simply‐connected 6‐manifold admits a Riemannian metric of positive scalar curvature. For metrics of positive Ricci curvature, it is widely open whether a similar result holds; there are no obstructions known for those manifolds to admit a metric of positive Ricci curvature, while the number of examples known is limited. In this article, we introduce a new description of certain ‐dimensional manifolds via labeled bipartite graphs and use an earlier result of the author to construct metrics of positive Ricci curvature on these manifolds. In this way, we obtain many new examples, both spin and nonspin, of ‐dimensional manifolds with a metric of positive Ricci curvature.
Read full abstract