The morphology and surface characteristics of Transverse Aeolian Ridges (TARs) reflect the recent and current environmental evolution of Mars. This study investigates the influence of typical Martian non-aeolian landforms impacted on the distribution and morphology of TARs using multi-source high-resolution orbiter images in the Zhurong rover's landing region at the south of Utopian Plain. This study proposes an automatic and effective approach for extracting TARs, while classifying their types and estimating their geometric parameters, including length, width, height, and angle. The obtained results confirm the effectiveness of the proposed method. In the Zhurong rover's landing region, TARs in flat areas have a sparse distribution and simple morphology. However, TARs are more concentrated and diverse in morphology around typical non-aeolian landforms such as cones and troughs. The orientation of TARs is determined by wind direction, and their width is affected by sediment richness. The morphology and distribution of TARs are also influenced by typical non-aeolian landforms, which modify local wind fields and sediments.
Read full abstract