Ribosomes are essential macromolecular machines required for decoding mRNA to make proteins, the major biomolecules that carry out all central cellular functions. As such, their structural and operational integrity is critical to organismal survival, and mutations that disrupt proper stoichiometry or assembly of ribosomes produce serious pathological consequences during an organism's development and/or adult life. The ribosome assembly factor PDCD2L is highly conserved from yeast to man, yet its overall function and requirement during development is poorly understood. By examining the developmental consequences of null mutations in trus , which encodes the Drosophila PDCD2L homolog, we demonstrate an essential role for this factor in cell-cycle regulation. Furthermore, disruption of Trus function in mitotically dividing imaginal tissue activates the Xrp1-dilp8 stress response pathway which limits production of ecdysone, the major arthropod molting hormone, leading to severe developmental delay during larval stages. These studies provide new insights on the requirements of this highly conserved ribosome assemble factor during development.
Read full abstract