The two forms of transthyretin differing slightly in the tertiary structure, despite the presence of five mutations, show radically different properties in terms of susceptibility to the amyloid transformation process. These two forms of transthyretin are the object of analysis. The search for the sources of these differences was carried out by means of a comparative analysis of the structure of these molecules in their native and early intermediate stage forms in the folding process. The criterion for assessing the degree of similarity and differences is the status of the hydrophobic core. The comparison of the level of arrangement of the hydrophobic core and its initial stages is possible thanks to the application of divergence entropy for the early intermediate stage and for the final forms. It was shown that the minimal differences observed in the structure of the hydrophobic core of the forms available in PDB, turned out to be significantly different in the early stage (ES) structure in folding process. The determined values of divergence entropy for both ES forms indicate the presence of the seed of hydrophobic core only in the form resistant to amyloid transformation. In the form of aggressively undergoing amyloid transformation, the structure lacking such a seed is revealed, being a stretched one with a high content of β-type structure. In the discussed case, the active presence of water in the structural transformation of proteins expressed in the fuzzy oil drop model (FOD) is of decisive importance for the generation of the final protein structure. It has been shown that the resistant form tends to generate a centric hydrophobic core with the possibility of creating a globular structure, i.e., a spherical micelle-like form. The aggressively transforming form reveals in the structure of its early intermediate, a tendency to form the ribbon-like micelle as observed in amyloid.
Read full abstract