The AlInGaN/GaN heterojunction epitaxy material with high cutoff frequency and saturated power density has become a very popular candidate for millimeter wave applications in next-generation mobile communication. In this study, an advanced voltage-controllable capacitor based on the AlInGaN/GaN-Si (111) epitaxy was proposed by employing a bi-directional series MIS capacitor structure. The capacitor was fabricated by using a pad area of 40 μm × 40 μm, with a 1 μm distance between the positive and negative electrodes. The test results show that the capacitance is turned on with a saturation capacitance density and a maximum leakage current density of 0.30 fF/μm2 of 0.37 pA/μm2, respectively, for the control voltage from −6.5 V to 6 V. In particular, in the proposed design method, the saturation capacitance required for the practical application can be obtained by simply adjusting the capacitance area. The capacitor showcases characteristics of rapid turn-on and turn-off responses coupled with low loss, underscoring its promising prospects for deployment in RF switching applications.