To develop an efficient simultaneous multislab imaging method with blipped-controlled aliasing in parallel imaging (blipped-SMSlab) in a 4D k-space framework, and to demonstrate its efficacy in high-resolution diffusion MRI (dMRI). First, the SMSlab 4D k-space signal expression is formulated, and the phase interferences from intraslab and interslab encodings on the same physical z-axis are analyzed. Then, the blipped-SMSlab dMRI sequence is designed, with blipped-controlled aliasing in parallel imaging (blipped-CAIPI) gradients for interslab encoding, and a 2D multiband accelerated navigator for inter-kz-shot phase correction. Third, strategies are developed to remove the phase interferences, by RF phase modulation and/or phase correction during reconstruction, thus decoupling intraslab and interslab encodings that are otherwise entangled. In vivo experiments are performed to validate the blipped-SMSlab method and preliminarily evaluate its performance in high-resolution dMRI compared with traditional 2D imaging. In the 4D k-space framework, interslab and intraslab phase interferences of blipped-SMSlab are successfully removed using the proposed strategies. Compared with non-CAIPI sampling, the blipped-SMSlab acquisition reduces the g-factor and g-factor-related SNR penalty by about 12%. In addition, in vivo experiments show the SNR advantage of blipped-SMSlab dMRI over traditional 2D dMRI for 1.3-mm and 1.0-mm isotropic resolution imaging with matched acquisition time. Removing interslab and intraslab phase interferences enables SMSlab dMRI with blipped-CAIPI in a 4D k-space framework. The proposed blipped-SMSlab dMRI is demonstrated to be more SNR-efficient than 2D dMRI and thus capable of high-quality, high-resolution fiber orientation detection.
Read full abstract