UV irradiation of yellow CH2Cl2 solutions of trans-Fe(CO)3(P((CH2)10)3P) (2a) and PMe3 (10 equiv) gives, in addition to the previously reported dibridgehead diphosphine P((CH2)10)3P (46%), a green paramagnetic complex that crystallography shows to be the trigonal-bipyramidal iron(I) radical trans-[Fe(CO)2(Cl)(P((CH2)10)3P)]• (1a•; 31% after workup). This is a rare example of an isolable species of the formula [Fe(CO)4-n(L)n(X)]• (n = 0-3, L = two-electron-donor ligand; X = one-electron-donor ligand). Analogous precursors with longer P(CH2)nP segments (n = 12, 14, 16, 18) give only the demetalated diphosphines, and a rationale is proposed. The magnetic susceptibility of 1a•, assayed by Evans' method and SQUID measurements, indicates a spin (S) of 1/2. Cyclic voltammetry shows that 1a• undergoes a partially reversible one-electron oxidation, but no facile reduction. The UV-visible, EPR, and 57Fe Mössbauer spectra are analyzed in detail. Complex 2a is similarly studied, and, despite the extra valence electron, exhibits a comparable oxidation potential (ΔE1/2 ≤ 0.04 V). The crystal structure shows a cage conformation, solvation level, disorder motif, and unit cell parameters essentially identical to those of 1a•. DFT calculations provide much insight regarding the structural, redox, and spectroscopic properties.
Read full abstract