White adipose tissue (WAT) requires extracellular Ca2+ influx for lipolysis, differentiation, and expansion. This partly occurs via plasma membrane Ca2+ voltage-dependent channels (CaVs). However, WFA exists in different depots whose function varies with age, sex, and location. To explore whether their CaV expression profiles also differ we used RNAseq and qPCR on gonadal, mesenteric, retroperitoneal, and inguinal subcutaneous fat depots from rats of different ages and sex. CaV expression was found dependent on age, sex, and WFA location. In the gonadal depots of both sexes a significantly lower expression of CaV1.2 and CaV1.3 was seen for adults compared to pre-pubescent juveniles. A lower level of expression was also seen for CaV3.1 in adult male but not female gonadal WFA, the latter of whose expression remained unchanged with age. Relatively little expression of CaV3.2 and 3.2 was observed. In post-pubescent inguinal subcutaneous fat, where the third and fourth mammary glands are located, CaV3.1 was decreased in males but increased in females - thus suggesting that this channel is associated with mammogenesis; however, no difference in intracellular Ca2+ levels or adipocyte size were noted. For all adult depots, CaV3.1 expression was larger in females than males - a difference not seen in pre-pubescent rats. These observations are consistent with the changes of CaV3.1 expression seen in 3T3-L1 cell differentiation and the ability of selective CaV3.1 antagonists to inhibit adipogensis. Our results show that changes in CaV expression patterns occur in fat depots related to sexual dimorphism: reproductive tracts and mammogenesis.
Read full abstract