The prevalence of retinal neovascular diseases necessitates novel treatments beyond current therapies like laser surgery or anti-VEGF treatments, which often carry significant side effects. A novel therapeutic approach is introduced using copper-containing layered double hydroxides (Cu-LDH) nanozymes integrated with nitric oxide-releasing molecules (GSHNO), forming Cu-LDH@GSHNO aimed at combating oxidative stress within the retinal vascular system. Combination of synthetic chemistry and biological testing, Cu-LDH@GSHNO are synthesized, characterized, and assessed for curative effect in HUVECs and an oxygen-induced retinopathy (OIR) mouse model. The results indicate that Cu-LDH@GSHNO demonstrates SOD-CAT cascade catalytic ability, accompanied with GSH and nitric oxide-releasing capabilities, which significantly reduces oxidative cell damage and restores vascular function, presenting a dual-function strategy that enhances treatment efficacy and safety for retinal vascular diseases. The findings encourage further development and clinical exploration of nanozyme-based therapies, promising a new horizon in therapeutic approaches for managing retinal diseases driven by oxidative stress.