Transmission of antimicrobial-resistant bacteria to humans through the food chain is of great importance for public health. In this study, it was aimed to isolate and characterize the cefotaxime and ciprofloxacin-resistant Escherichia coli in retail chicken meat samples sold in Hatay. The isolates were subjected to phylogenetic group typing and antimicrobial susceptibility testing. The genetic relatedness of the isolates was determined using Enterobacterial Repetitive Intergenic Consensus Polymerase Chain Reaction (ERIC-PCR) technique. The isolates were also screened for the presence of both antimicrobial and plasmid-mediated quinolone resistance (PMQR) genes by PCR. Cefotaxime and ciprofloxacin co-resistant E. coli isolates with diverse genetic origins were recovered in 42.3% (22/52) of retail chicken carcasses. The E. coli isolates belonged to the phylogenetic group D2 were dominant (40.9%, 9/22), followed by B1 (27.3%, 6/22), B23 (18.2%, 4/22), and A1 (13.6%, 3/22), respectively. Based on dendrogram analysis, the ERIC-PCR method differentiated the isolates into 10 clusters (I-X). The multidrug resistance (MDR) was observed in 81.8% (18/22) of the isolates. PMQR determinants were not identified in any isolates tested. Molecular analysis revealed one or more β-lactamase-encoding genes in all isolates as a single or in combination: blaCTX-M-blaTEM (n=5), blaCMY-2 (n=5), blaCTX-M (n=5), blaCMY-2-blaSHV (n=3), blaCMY-2-blaTEM (n=3), and blaCTX-M-blaCMY-2 (n=1). This study highlights that retail chicken meat is an important reservoir of cefotaxime and ciprofloxacin co-resistant E. coli isolates. It is necessary to evaluate their contribution to the community and hospital infections.
Read full abstract