The problem of studying the deformation response of film samples made of UV-curable polymers to temperature changes is considered. It is difficult to obtain massive samples of these polymers due to the peculiarities of their polymerization. This paper suggests a methodology for tests that allows us to determine the temperature dependence of the coefficient of linear thermal expansion (CTE) in a wide range, including the relaxation transition. As measuring equipment was used a dynamic mechanical analyzer TA Instruments Q800 DMA with liquid nitrogen cooling system GCA, which allows varying temperature and its rate of change in wide ranges, controlling and measuring forces and displacements with high accuracy. The proposed approaches are applicable to any film samples and provide an opportunity to establish functional dependences of CTE not only on temperature, but also on its rate of change. At the same time, in contrast to traditional methods, the described procedures allow obtaining correct data under the conditions of relaxation transitions taking into account the influence of the temperature change rate on these processes. Considerable attention is paid to calibrate the measuring equipment, in particular, the measurement and compensation of the temperature deformation of the tooling. The measurements results are compared with known literature sources, manufacturers data, the results of measurements of samples with known characteristics and with the results obtained on a horizontal dilatometer. It is shown that the proposed method of measurements is correct and has a number of advantages over traditional methods of research when working with film samples or in cases where it is necessary to take the effect of the rate of temperature change on CTE into account.
Read full abstract