Nuclear energy levels are usually calculated using conventional diagonalization methods in the framework of the configuration-interaction (CI) shell model but these methods are prohibited in very large model spaces. The shell model MonteCarlo (SMMC) method is a powerful technique for calculating thermal and ground-state observables of nuclei in very large model spaces, but it is challenging to extract nuclear spectra in this approach. We present a novel method to extract within SMMC low-lying energy levels for given values of a set of good quantum numbers such as spin and parity. The method is based on imaginary-time correlation matrices (ITCMs) of one-body densities that satisfy asymptotically a generalized eigenvalue problem. We validate the method in a light nucleus that allows comparison with exact diagonalization results of the CI shell-model Hamiltonian. The method is broadly applicable to quantum many-body systems in other disciplines.
Read full abstract