ObjectiveTo develop a SARS-CoV-2 antigen detection management system for Chinese residents under community grid management, which is supported by “health information technology” and “neural network image recognition”, so as to give full play to the advantages of “grid management”. This system is applied to the normalized prevention and control of COVID-19 epidemic. MethodsThe model of image recognition algorithm was built based on deep learning and convolution neural network (CNN) artificial intelligence algorithm. The improved Canny edge detection algorithm was used to monitor and locate the image edge, and then the image segmentation and judgment value calculation were completed according to projection method. The system construction was completed combing with the grid number design. ResultsThe proposed method had been tested and showed the accuracy of the algorithm. With a certain robustness, the algorithm error was proved to be small. Based on the image recognition algorithm model, the development of SARS-CoV-2 antigen detection management system covering user login, paper-strip test image upload, paper-strip test management, grid management, grid warning and regional traffic management was completed. ConclusionsAntigen detection is an important supplementary means of COVID-19 epidemic prevention and control in the new stage. The SARS-CoV-2 antigen detection management system for Chinese residents under community grid managemen based on image recognition enables mobile communication devices to recognize the image of SARS-CoV-2 antigen detection results, which is helpful to form a grid management mode for the epidemic and improve the management framework of epidemic monitoring, detection, early warning and prevention and control.
Read full abstract