ABSTRACT: The Bambuí Group, the most extensive carbonate-siliciclastic cover on the São Francisco craton, has been a matter of debate because of its potential correlations to global glacial events. Unfortunately, most available chemostratigraphic data came from samples collected on surface rock exposures, ever susceptible to the aggressive chemical weathering that characterizes the southeastern Brazil. On the other hand, we present here high-resolution chemostratigraphic studies based on C, O and Sr isotopic data from 53 samples collected along a weathering-free, continuous, 175 m thick sedimentary succession. This succession was recovered by borehole drilling in the southwestern São Francisco craton, where occur the Carrancas and Sete Lagoas formations, the lowermost units of the Bambuí Group. The drill cores reveal extremely irregular contacts between the basal diamictite and its basement, an Archaean foliated granodiorite. Geochronological and sedimentological data strongly suggest that the diamictite represents a lodgement till. This glaciogenic deposit is covered by a limestone succession which starts with impure carbonates showing aragonite pseudomorph fans and thin bands of black shale. The limestone pile grades to a marl-mudstone interval, which turns to a carbonate with biological components, succeeded by stromatolitic dolomite at the top. C and O isotopic signatures (referred to V-PDB) allow to the subdivision of the lower carbonate-pelite section into three intervals. The first isotopic interval corresponds to a cap carbonate, and displays negative values of δ13C (c . -4‰), and a large oscillation of the δ18O (-6 to -15‰). The Interval II shows a striking homogeneity in δ13C and δ18O, around 1‰ and -7‰, respectively. At the top, Interval III shows a large positive excursion of the δ13C (up to 8‰) and δ18O (-8 to -3‰) values. Unaltered 86Sr/87Sr ratios range from 0.7075 to 0.7077, mainly at the top of the section. The geochemistry of the carbonates is controlled by their terrigenous content (mostly quartz and clay minerals) which is concentrated in the lower units. Samples free of terrigenous contamination show Y/Ho ratios ranging from 25 to 50, suggesting a freshwater input during carbonate deposition. It is concluded that the diamictite has a glaciogenic origin and is covered by a cap carbonate. This pair has been identified along the basin and is related to one of the main Neoproterozoic glaciations. Discrepancy between the 86Sr/87Sr values and the global variation curves can be related to freshwater input during the carbonate deposition. Based on the regional tectonic context, the Bambuí Basin may have been a restricted marine basin, totally or partially surrounded by mountain ranges within Gondwana, in the Neoproterozoic/Paleozoic boundary. In its early stages, the sedimentation was influenced by a global glacial event, whose melting phase was responsible by freshwater input in the basin. The gradual rise of the temperature was followed by an increase of the biological activity. Finally, a sudden increase in the biological activity could have been driven by paleogeographic changes caused by the active tectonic.
Read full abstract