Conventional antibiotics are limited by drug resistance, poor penetration, and inadequate targeting in the treatment of bacterial biofilm-associated infections. Microbubble-based ultrasound (US)-responsive drug delivery systems can disrupt biofilm structures and enhance antibiotic penetration through cavitation effects. However, currently developed US-responsive microbubbles still depend on antibiotics and lack targeting capability. In this work, magnetic field/ultrasound (MF/US)-responsive Fe3O4 microbubbles (FMB) were constructed based on Fe3O4 nanoparticles (NPs) with superparamagnetic and peroxidase-like catalytic properties. In vitro experiments demonstrated that FMB can be targeted to methicillin-resistant Staphylococcus aureus (MRSA) biofilms by the direction of MF. Upon US irradiation, FMB collapse due to inertial cavitation and generate mechanical forces to disrupt the structure of MRSA biofilms and releases Fe3O4 NPs, which catalyze the generation of reactive oxygen species (ROS) from H2O2 in the biofilm microenvironment and kill the bacteria within the biofilm. In a mouse biofilm infection model, FMB efficiently destroyed MRSA biofilms grown in subcutaneous catheters with the MF and US. Magnetic-targeted mechanical/catalytic therapy based on FMB provides a promising strategy for effectively combating bacterial biofilm infection.
Read full abstract