The aim of this study was to determine whether walking exercise can regulate the expression level of neuropathic pain- and inflammatory response markers in the ipsilateral lumbar 4 to 6 dorsal root ganglion neurons after sciatic nerve injury (SNI). The experimental rats were randomly divided into seven groups: the normal control group, sedentary groups for 3, 7, and, 14 days postinjury (dpi), and walking exercise groups for 3, 7, and 14 dpi. Western blot techniques were used to evaluate specific neuropathic pain- and cytokine markers and mechanical allodynia was confirmed by paw withdrawal test. Mechanical allodynia was significantly improved in the walking exercise group compared to the sedentary group at all 7, 10, and 14 dpi. Furthermore, growth associated protein 43 and brain-derived neurotrophic factor levels were significantly increased in the walking exercise groups compared to the sedentary group at all 3, 7, and 14 dpi. Conversely, nuclear factor kappa-light-chain-enhancer of activated B cells, interleukin-6, tumor necrosis factor α, calcitonin gene-related peptide, and c-Fos expression levels were significantly decreased in the walking exercise groups compared to the sedentary group at all 3, 7, and 14 dpi. These findings suggest meaningful information that aggressive rehabilitation walking exercise applied early after SNI might be improve mechanical allodynia, neuropathic pain and inflammatory response markers following SNI.