A popular water pipe system, used in many countries, is one formed by prestressed cylindrical concrete pipes (PCCP). This study used the results of an experimental investigation on ten (10) PCCP samples taken from an existing water pipeline. The objective was to investigate their bearing capacity under three-edge bending or internal hydraulic pressure loads to check the capability of specific retrofitting/strengthening schemes to upgrade this bearing capacity and thus enhance the operational period (Part A). In this part B study, the measured response of the PCCP pipes was made to validate a numerical approach aimed at numerically simulating the behavior of the original and retrofitted PCCP pipes under hydraulic internal pressure. From the obtained numerical results, it was seen that the assumed nonlinear mechanisms for the concrete volume and steel membrane were verified by comparing numerical predictions with measurements in terms of strain response of the steel membrane, damage patterns of the concrete volume, and the overall internal pressure versus radial expansion response. The numerical predictions of the bearing capacity contribution of the fully active prestress as well as the three specific jacketing schemes, including carbon fiber reinforced polymer (CFRP) or reinforced concrete (RC) jackets, were also verified from comparisons with the corresponding measured response.