Abstract Vibration-based structural damage identification has been widely investigated. Different from previous studies that analyze vibrational responses in time and frequency domains, a new Lorentz attractor excitation-based damage identification is becoming a novel strategy with the advantage of capturing the structure’s nonlinear dynamic effects. In this study, Lorentz attractor-based chaotic signals were employed as excitation signals for the structural damage identification of a frame structure. Nonlinear responses were recorded and damages of bolt looseness at different locations were considered. The structural damages could be revealed in the state-space plot of the responses. A state space curvature reconstruction method was introduced to enhance the key features of the nonlinear responses. A small-sample damage identification is performed using a deep learning algorithm – a Transformer with an accuracy of 92.38%. The advantages of the proposed method over conventional deep learning algorithms were validated. The proposed method can be applied to health conditions identification of buildings, bridges, and trusses.