Standing on the brink of the fourth industrial revolution, Cyber Physical Systems (CPS) are considered the basic components of the Smart Factory. One important challenge in cyber physical production systems is dynamic scheduling that can handle random disruptions such as failures, raw material shortages and quality defects. To achieve dynamic scheduling, we have proposed a Supervised and Distributed Holonic architecture we called SUDIHA. This architecture incorporates three Holons: Product Holon, Resource Holon and Order Holon and combines global supervision, achieved by Product Holon, with dynamic local control, achieved by Resource Holon. The Digital Twin (DT) concept is generally used to design CPS; it is virtual copies of the system that can interact with the physical counterparts in a bi-directional way. It seems to be promising to tackle the complexity and increase manufacturing system flexibility. In this paper, we use a DT Model to improve the SUDIHA architecture. We propose a Digital Twin based SUDIHA architecture (DT-SUDIHA). The paper will describe Digital Twins’ configuration of each Holon of the SUDIHA Architecture, and the intelligent and real time data driven operation control of this architecture. A case study is carried out at the ENSAM-Meknes flexible workshop to prove the effectiveness of the proposed approach.
Read full abstract