Industrial revolutions and demand of novel applications drive the development of sensors which offer continuous monitoring of remote hostile areas by collecting accurate measurement of physical phenomena. Data aggregation is considered as one of the significant energy-saving mechanism of resource constraint Wireless Sensor Networks (WSNs) which reduces bandwidth consumption by eliminating redundant data. Novel applications demand WSN to provide information about the monitoring region in multiple aspects in large scale. To meet this requirement, different kinds of sensors of different parameters are deployed in the same region which in turn demands the aggregator node to integrate diverse data in a smooth and secure manner. Novelty in applications also requires Base station (BS) to apply multiple statistical functions. Hence, we propose to develop a novel secure cost-efficient data aggregation scheme based on asymmetric privacy homomorphism to aggregate data of multiple parameters and facilitate the BS to compute multiple functions in one round of data collection by providing elaborated view of monitoring region. To meet the claim of large scale WSN which requires dynamic change in size, vector-based data collection method is adopted in our proposed scheme. The security aspect is strengthened by allowing BS to verify the authenticity of source node and validity of data received. The performance of the system is analyzed in terms of computation and communication overhead using the mathematical model and simulation results.