Vibrational structure of trifluoromethylthiobenzene (C6H5SCF3) on the S1 state has been investigated by resonance-enhanced two-photon ionization spectroscopy and nature of predissociation dynamics is inferred from homogeneously broadened spectral features. As C6H5SCF3 adopts a nonplanar structure in both the S0 and S1 states, the effective adiabatic barrier generated by avoided crossing of optically-bright bound S1 (ππ∗) and dark-repulsive S2 (πσ∗) surfaces along the reaction coordinate is significantly lowered, giving the S1 lifetime of ∼300fs. This experiment demonstrates that the molecular structure spanned by the reactive flux near the curve-crossing region dictates reaction rate as well as nonadiabatic transition probability.
Read full abstract