Abstract Introduction/Objective Molecular assays for Bartonella species are important in diagnosing infection and expediting patient treatment. Real time polymerase chain reaction (RT-PCR) using fluorescent resonance energy transfer (FRET) hybridization probes can be used to detect Bartonella species in blood and fresh/fixed tissue biopsies in RT-PCR instruments. Over time, new technologies and reagents are introduced and existing PCR primers and FRET probes must be re-validated on new platforms. This study aimed to compare the performance of a Bartonella RT-PCR assay using the sunsetting Roche LightCycler® 2.0 (Roche Diagnostics, Indianapolis, IN) and newer LightCycler® 480 RT- PCR instruments. Methods/Case Report DNA was extracted from 132 historically positive, whole organism spiked, and historically negative whole blood and formalin fixed paraffin embedded (FFPE) samples. Samples were run on the LightCycler® 2.0 using instrument specific LightCycler® FastStart DNA Master HybProbe enzyme and compared to results generated using the LightCycler® 480 and its instrument specific LightCycler® 480 Genotyping Master enzyme. During optimization, MgCl2 concentrations and thermocycling profiles were adjusted. Accuracy, specificity, inclusivity, and limit of detection studies were performed. Crossing point (Cp), melting temperature (Tm), fluorescent peak and fluorescent background values were compared between the two instruments. Results (if a Case Study enter NA) The agreement in accuracy between the LightCycler® 2.0 and the LightCycler® 480 was 100% for whole blood samples. For historically positive FFPE samples, LightCycler® 2.0 sensitivity and LightCycler® 480 sensitivity were 86% and 100%, respectively. Specificity and inclusivity of the assay were identical between the two instruments. The limit of detection in whole blood was 5-fold lower on the LightCycler® 480 (50 copies/µL) compared to the LightCycler® 2.0 (250 copies/µL). Mean Cp and fluorescent peak intensity values increased by 5.1% and 65-fold, respectively. Conclusion The study demonstrates similar performance and improved limit of detection for the Bartonella FRET hybridization probe RT-PCR assay on the LightCycler® 480 compared to the LightCycler® 2.0.
Read full abstract