Gummy stem blight (GSB), a major disease caused by Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), has caused significant losses of watermelon in the United States. The lack of progress in the development of resistant cultivars is the result of complex inheritance of resistance and breeding strategies that rely on single-plant selection. Because the sources of resistance are wild watermelon relatives, good fruit quality has been difficult to maintain during the selection process. Three hundred recombinant inbred line (RILs) in a population that carries resistance genes to GSB as well as good fruit quality were produced. This was accomplished by crossing and intercrossing resistant plant introductions, crossing the resulting progenies with elite cultivars, intercrossing those progenies, and, finally, self-pollinating to the S3 generation. The 300 RILs were evaluated for disease severity and fruit morphological and quality traits under greenhouse and field conditions in a randomized complete block design with 10 replications and 3 years. The means and correlations for disease severity ratings and fruit quality traits were estimated. Approximately 186 RILs had disease severity ratings below the mean value of the disease assessment scale (4.5), indicating that they possibly carry one or more genes for resistance to GSB. All disease severity ratings were correlated to each other (r = 0.67–0.98; P < 0.001), but they were not correlated with fruit quality traits. Most importantly, several resistant RILs showed good to excellent fruit quality. Our results provide evidence of improved germplasm with high resistance and good fruit quality.