Artificial intelligence (AI) technology is advancing the digitization and intelligence development of the food industry. A promising application is using deep learning-assisted visible near-infrared (vis-NIR) spectroscopy to monitor residual sugar and bacterial concentration in real-time, ensuring kombucha quality during production. The feature fingerprints of residual sugar and bacterial concentration were extracted by four variable selection algorithms and then reconstructed using serial and parallel processing methods. Based on these reconstructed features, Partial Least Squares (PLS) and Convolutional Neural Networks (1DCNN and 2DCNN) models were developed and compared. The experimental results showed that the 2DCNN model based on reconstruction features achieved superior performance. The RPDs of the residual sugar and bacterial concentrations models were 4.49 and 6.88, while the MAEs were 0.42 mg/mL and 0.04 (Abs), respectively. These results suggest that the proposed modeling strategy effectively supports quality control during kombucha production and provides a new perspective for spectral analysis.
Read full abstract