BackgroundResidential aged-care facilities (RACFs, also called long-term care facilities, aged care homes, or nursing homes) have elevated risks of respiratory infection outbreaks and associated disease burden. During the COVID-19 pandemic, social isolation policies were commonly used in these facilities to prevent and mitigate outbreaks. We refer specifically to general isolation policies that were intended to reduce contact between residents, without regard to confirmed infection status. Such policies are controversial because of their association with adverse mental and physical health indicators and there is a lack of modelling that assesses their effectiveness.MethodsIn consultation with the Australian Government Department of Health and Aged Care, we developed an agent-based model of COVID-19 transmission in a structured population, intended to represent the salient characteristics of a residential care environment. Using our model, we generated stochastic ensembles of simulated outbreaks and compared summary statistics of outbreaks simulated under different mitigation conditions. Our study focuses on the marginal impact of general isolation (reducing social contact between residents), regardless of confirmed infection. For a realistic assessment, our model included other generic interventions consistent with the Australian Government’s recommendations released during the COVID-19 pandemic: isolation of confirmed resident cases, furlough (mandatory paid leave) of staff members with confirmed infection, and deployment of personal protective equipment (PPE) after outbreak declaration.ResultsIn the absence of any asymptomatic screening, general isolation of residents to their rooms reduced median cumulative cases by approximately 27%. However, when conducted concurrently with asymptomatic screening and isolation of confirmed cases, general isolation reduced the median number of cumulative infections by only 12% in our simulations.ConclusionsUnder realistic sets of assumptions, our simulations showed that general isolation of residents did not provide substantial benefits beyond those achieved through screening, isolation of confirmed cases, and deployment of PPE. Our results also highlight the importance of effective case isolation, and indicate that asymptomatic screening of residents and staff may be warranted, especially if importation risk from the outside community is high. Our conclusions are sensitive to assumptions about the proportion of total contacts in a facility accounted for by casual interactions between residents.