Collision modelling represents an active field of research in musical acoustics. Common examples of collisions include the hammer-string interaction in the piano, the interaction of strings with fretboards and fingers, the membrane-wire interaction in the snare drum, reed-beating effects in wind instruments, and others. At the modelling level, many current approaches make use of conservative potentials in the form of power-laws, and discretisations proposed for such models rely in all cases on iterative root-finding routines. Here, a method based on energy quadratisation of the nonlinear collision potential is proposed. It is shown that there exists a suitable discretisation of such a model that may be resolved in a single iteration, while guaranteeing stability via energy conservation. Applications to the case of lumped as well as fully distributed systems will be given, using both finite-difference and modal methods.
Read full abstract