Estrogen is an essential hormone for the development and functional activities of reproductive organs. Recent studies showed that estrogen signaling is also an important regulator of lipid and glucose metabolism in a number of tissues, but the molecular mechanism is not fully understood. We report here that estrogen is a stimulator of brain-derived neurotrophic factor (BDNF) synthesis in the skeletal muscle. Estradiol (E2), but not testosterone, induces a dose- and time-dependent BDNF production in cultured myotubes. Estrogen depletion in ovariectomized mice significantly reduced Bdnf expression in the glycolytic myofibers, which could be rescued after E2 administration. Mechanistically, E2 stimulation triggered the tethering of estrogen receptor (ER) α, but not ERβ, to the estrogen-responsive element on promoter VI of the Bdnf gene in skeletal muscle. When Bdnf production was inhibited by shRNA in C2C12 myotubes, E2-induced mitochondria activation and pyruvate dehydrogenase kinase 4 expressions were jeopardized. Collectively, our results demonstrate that BDNF is an underrecognized effector of estrogen in regulating mitochondrial activity and fuel metabolism in the skeletal muscle.
Read full abstract